The Bayesian Low-Rank Determinantal Point Process Mixture Model

نویسندگان

  • Mike Gartrell
  • Ulrich Paquet
  • Noam Koenigstein
چکیده

Determinantal point processes (DPPs) are an elegant model for encoding probabilities over subsets, such as shopping baskets, of a ground set, such as an item catalog. They are useful for a number of machine learning tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. Recent work has shown that using a low-rank factorization of this kernel provides remarkable scalability improvements that open the door to training on large-scale datasets and computing online recommendations, both of which are infeasible with standard DPP models that use a full-rank kernel. In this paper we present a low-rank DPP mixture model that allows us to represent the latent structure present in observed subsets as a mixture of a number of component low-rank DPPs, where each component DPP is responsible for representing a portion of the observed data. The mixture model allows us to effectively address the capacity constraints of the low-rank DPP model. We present an efficient and scalable Markov Chain Monte Carlo (MCMC) learning algorithm for our model that uses Gibbs sampling and stochastic gradient Hamiltonian Monte Carlo (SGHMC). Using an evaluation on several real-world product recommendation datasets, we show that our lowrank DPP mixture model provides substantially better predictive performance than is possible with a single low-rank or full-rank DPP, and significantly better performance than several other competing recommendation methods in many cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference for latent biologic structure with determinantal point processes (DPP).

We discuss the use of the determinantal point process (DPP) as a prior for latent structure in biomedical applications, where inference often centers on the interpretation of latent features as biologically or clinically meaningful structure. Typical examples include mixture models, when the terms of the mixture are meant to represent clinically meaningful subpopulations (of patients, genes, et...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Infinite determinantal measures

Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets of the phase space. Alternatively, an infinite determinantal measure can be described as a product of a determinantal point process and a convergent, but not integrable, multiplicative functional. Theorem 2, the main result announced in this note, gives an ex...

متن کامل

Low-Rank Factorization of Determinantal Point Processes for Recommendation

Determinantal point processes (DPPs) have garnered attention as an elegant probabilistic model of set diversity. They are useful for a number of subset selection tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. In this work we present a new method for learning the DPP kernel from observed data using a low-rank factorization of this kernel...

متن کامل

Bayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart

The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.04245  شماره 

صفحات  -

تاریخ انتشار 2016